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INTRODUCTI3N -.... 

The "bang-bang" principle for  l inear co3trol systems 

u' (t) = A(tju(t)  + B('c)f (.:I.> (I..; 

In fbite4mensiona.l  space E" 

10~s: 

(J. P, LaSalle, [I]) c a  be stated as fol- 

i f  the system (1) can be steered from a po*t u E ll? t o  another 

point v E 8 in a 

~LI  the un i t  cube K 

elso be achieved in 

given time tl > 0 by a cmt ro l  f taka values, say, 

of then the t.:.xisfdr of (1) from u t o  v can 

the same t h e  by another control fo taking values 5.n 

K the se t  of e::tremEti po:',r?*cs of X, This rearzl.t he,s beeu extended In 

various directions; l e t  us only mention [g], where K is d-lowed t o  be 

any compact convex set i n  E?. 

eralizations) . 
R i m a  spaces; 

A ar,d B the-independent where the final s ta te  v at a gtven tr;lrc t2 

&epeads 7:ziquel.y -- * on the controi f. (See [2], 133). However, the princi3l-e 

subsSs%s sf we satfsf'y ouTtr,-.ives with approxht-bg (and not actually e,t!-&c- 

lag.) the ?.'ma', state. 

the who-.. trajectory betwe-*i u and v by mearrls of Ko-valued controls 

(Thaorem 2.2). 

Uuear control systems ~ f l  finite-dimmsional c j ~ ~ e ;  

cation of elamentary facta of the theory of ix:-egration of irec:or-valued 

m c  t Loas. 

03 

(See also [ b ] ,  [?I for other types of gen- 

The "bang-bang principle does not hold i n  hf? in i te -d~rmb 

i n  fact, it is easy t o  construct contra?- systeas, even wtth 

'sr, it turns out that we can also approximate 

This r e a 3  is s-ar in form to the one i n  [5] for  con- 

i t s  proof I s  tm zppl5- 
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1. THE INITIAL-VALUE PROBLEM - 
We sha l l  denote by E,F two (real  or complex) Banach spaces, L(F;E) 

the Banach space of a l l  l inear  bounded operators from F t o  E endowed, as 

usual, with the uniform operator topology. For each t in [to,tl], to < tl 

A(t) w i l l  be a (possibly unbounded) l inear operator with domain D(A(t)), 

We sha l l  assume that  the Cauchy problem for 

ut ( t )  = A(t)u(t) (1.1) 

i s  w e l l  set. 

strongly continuous L(E,E)-valued fbnction U.(t, s) defined i n  the triangle 

to d 6 d t d \ sartisfying U(t,t) 3 I, to 5 t S tl and such that for  each 

t E [toytl), u E E the function 

This means there exists an evolution operator U(t,s), L e .  a -- 

U(8) = U(s,t)u 

i s  a (classical  o r  generalized) solution of (1.1) in [t,tl]. 

strongly measurable function g ( - )  defined and summable in [tdtl] and 

any u E E we shaLl define the expression 

For any 

t 
u( t )  = U(t,to)u + I U(t,s)g(s)ds 

0 
t 

t o  be a soJ.ution of the inhonaogeneaus equation 

It is easy to see that the function u(-) 

continuous i n  [to,t,'J. 

def'ined by (1.2) exis ts  and is 

lhder a d d i t i o d  condii2ons on A(t),U(t, s),g(s) 
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m d  u it is possible to shuw that  (1.2) i s  a genuine solution of (1.3)s 

we shall not dwell upon t h i s  point here. 

Finally, we consider the linear control system 

U* ( t )  = A(t)u(t) + B(t)f(t) ,  to t Si tl (1.4) 

For each t, t o d  t B tl, B(t) is a bounded operator f r a  F t o  E. 

W e  assume that B(o) is strongly measurable, Le .  tha t  for any u E F the 

E-valued f’unction B( )u is strongly measurable; moreover, we suppose 

there exis ts  a scalar-valued function ~ ( e ) ,  summable i n  [to,tl] such 

that 

The class of controls ;eK consists of a l l  strongly measurable F- 

valued functions f(*) defined in [to,tl] with values i n  same fixed 

closed, bounded, convex se t  K. 

the solutions of (L4) f o r  some control f E gK, i.e. f’unctions of the form 

The trajectories of the system (1.4) are  

t 
u(t)  = U(t,to)u + I U(t,s)B(s)f(s)ds (1.6) 

with f r t K .  Since B(-)f(o) is summable i n  E, each trajectory U ( 0 )  

is  continuous in 

PRfNCIPIlE 

follows, KO will be a subset of K satisfying 

Finite convex combinations of elements of KO (i.e.finite 
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sums $%J \ 2: 0, 

Let us c a l l  $ 

\ = 1, 5 B KO) -- are -- dense LI in K. 

the subset of ;e, defined by the followlng two con- 
KO 

ditions: 

(a) There exilsts dis joint  intervals 11, .. .,In,L!Ik = [to,tl] such 

that f is constant i n  each fk. 
f ( t )  E KO for  all t E [to,t,]. (b) 

2.2 THEOREM Let u(.) be a trajectory of (1.4) corresponding t o  sane 

f E ;eK and l e t  E > 0. 

jectory uo(=) corresponding t o  fo  sa t i s f ies  

Then there exis ts  a fo E ;le such that the tra- 
KO 

lu ( t )  a U,(t)l, s E, t 0 s t s tl. 

The proof of Theorem 2.2 i s  a consequence of the following auxiliary 

result: 

2.3. LEMMA Let X be a Banach space, N(.) a L(F; X)-valued, strongly 

measurable function L- defined - i n  [to,tl] 

q -- for same sumable f'unction v ( * ) .  
such that 

Let 

IN(t)l d q(t), to d t i 

(xo) be the set  of a l l  

f E ;eK(f e ;e - Then 5c, is --- dense in  x. 
Denote 

KO 

In  fact, assume Lemma 2.2 holds. F ( E )  5: X the Banach 

space of a l l  E-valued continuous functions u( - j  defined in [to,tl] 
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(norm }u(+i, = S w t  ststl Iu<t ) l ) .  Let E > 0, U, the L(E,E)-t%lued 

funcC,ion defined !A the square to d s, t S tl as beizg equal t o  u( t , s )  

In the  triangle 

0- 

to L 6, t d tl, n u l l  in the t r i m g l e  to 5 t 5 ci - E S 

d tl - e and defined elsewhere such as t o  be continuom Id the square and 

such that 

is not d3ffLccl.t t o  see that the L(F) $ (E)).-valued function N ( s )  = 

- - u,(*,s)B(s), to s s 5 tl i s  strongly me::mrable and (1.3) implies tha t  

it sa t i s f ies  the r e s t  of the assumption of Lemma 2.3. Consequently Lemma 

2.3 te l ls  us tha t  the set of elements of E ( E )  of the form 

tl 

to 
I UE(t,s)B(s)f (s)ds, (2.3) 

with f E ;cK is  dense ( in  the z(E)-topology) i n  the se t  of elements 

of the  form (2.3) with f €.;eK. 

U instead of U i n  (2,3); ncte, however, t ha t  

0 
This would yield Theorem 2,2 i f  we had 

*€ 

C1 an uppex 3ound for [lul; Y E IC}, ~ ( 0 )  the function i n  (L5). This 

proves Theor.= 2.2. 

Proof of Lemma. 2.3= The proof is trivial if N(0) is uniformly -- 
measurable ( L e .  measurakle as an L(F3X)-valued Functboa). For in this  

case, given B > 0 we can find disjoint interval8 whose union differs from 

[to,tl] i s  a set  of measure B E and operators Nk E L(F;X) such that  
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This makes clear that  we only need t o  prove Lemma 2.2 for  the case IT con- 

stant. Let f e k,. If Y = I f(s)ds, it follows fran the fact  that  K 

- 
tl 

K' - 
i s  closed and convex that 

b i t r a r i l y  well by ( f ini te)  

W can be approximated by 

tl 

(t,-to)-lv E K. Then it can be approximated ar- 

convex combinations c %%, % E KO. 
elements of the form N(tl-to)u, 

But then 

and N(t -t )u = 1 0  

I= I Nfo(s)ds, where fo(s) = % for  s E Jk, Jk an arbitrary family of 

(disjoint)  subintervals of [to,tl], length (Jk) = (tl-to)$. 

Observe next that i f  F is finite-dimensional, the concepts of strong 

and uniform measurability f o r  N(.) coincide. We shal l  thus end the proof 

by reducing the general case t o  that i n  which dim F < 00, 

Since f i s  strongly measurable, we can find a g of the form 

Let f E ;eK. 

ul,u2, . . . E K, X1X2, . . . 
se ts  e em,... i n  [to,tl] such tha t  I f (s)  - g(s)( 6 E i n  [to,tl] 

outside a ::et of measure L E, thus we can assume f t o  be of the form 

(2.4), Now9 since each % can be approximated by convex combinations 

p ( k 1  

the convex hul l  K' 

characteristic functions of dlsjoint measurable 

1' c 

we c m  assume the values of f actually belong t o  3-1 \jYrj) Ukj E 
of the points y,r~, k = 1,2,... 1 d j 5 m(k). But KU 

i s  contained in the finite-dimensional subspace F' of F generated by the 
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and those points satis* Assumption 1 (with respect to Kf) thus our 
Y,cjr 

result for finite-dimensional F applies, completing the proof of Lemma 

2.2. 

2.4. REMARK. Assume F is the dual of another Banach space F1. Thus K 

is compact in F with respect to the weak topology. But then, by the Krein- 

Milman theorem ([l], Chspter V, 8-41> 

convex envelope of Cfs s e t  of extremal. points. 

enve]gpe of a set is the same in the strong as in the weak topology, thus 

Ke, the set of extremal points of K satisfies Assumption 2.1. In same 

cases, KO can be chosen to be a proper subset of Ke. The most interest- 

ing case in application is that in which is substantially smaller than 

K; for instance, if K is a polyhedron in a finite-dimensional space F, 

K is the closed (in the weak topology) 

However, the closed convex 

KO 

we may take KO to be the set of its vertices. Thus, the steering of (1.1) 

can be achieved up to any degree of accuretcy.with controls assuming only a 

finite number of values. 

2.5. IGMARK. Theorem 2.2 admits evident generalizations to infinite time 

intervals (to,=) moving control sets K 3: K ( t ) ,  etc. 
- 
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FOOTFOTES 

1. See [l] fo r  definitions and results used here. 

2, A l l  the integrals throughout th is  paper are  Bochher integralst 

Chapter 3 fo r  an exposition of the theory of integration of vector- 

valued f’unctions. 

see [6 ] ,  


